3.2.42 \(\int \frac {1}{\sqrt {a \sin (e+f x)} (b \tan (e+f x))^{3/2}} \, dx\) [142]

Optimal. Leaf size=86 \[ -\frac {1}{b f \sqrt {a \sin (e+f x)} \sqrt {b \tan (e+f x)}}-\frac {\sqrt {\cos (e+f x)} F\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {b \tan (e+f x)}}{b^2 f \sqrt {a \sin (e+f x)}} \]

[Out]

-1/b/f/(a*sin(f*x+e))^(1/2)/(b*tan(f*x+e))^(1/2)-(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticF(sin
(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(b*tan(f*x+e))^(1/2)/b^2/f/(a*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2677, 2681, 2720} \begin {gather*} -\frac {\sqrt {\cos (e+f x)} F\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {b \tan (e+f x)}}{b^2 f \sqrt {a \sin (e+f x)}}-\frac {1}{b f \sqrt {a \sin (e+f x)} \sqrt {b \tan (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a*Sin[e + f*x]]*(b*Tan[e + f*x])^(3/2)),x]

[Out]

-(1/(b*f*Sqrt[a*Sin[e + f*x]]*Sqrt[b*Tan[e + f*x]])) - (Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2]*Sqrt[b*Ta
n[e + f*x]])/(b^2*f*Sqrt[a*Sin[e + f*x]])

Rule 2677

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Sin[e + f
*x])^m*((b*Tan[e + f*x])^(n + 1)/(b*f*(m + n + 1))), x] - Dist[(n + 1)/(b^2*(m + n + 1)), Int[(a*Sin[e + f*x])
^m*(b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && NeQ[m + n + 1, 0] && Integer
sQ[2*m, 2*n] &&  !(EqQ[n, -3/2] && EqQ[m, 1])

Rule 2681

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[Cos[e + f*x]
^n*((b*Tan[e + f*x])^n/(a*Sin[e + f*x])^n), Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^n, x], x] /; FreeQ[{a, b
, e, f, m, n}, x] &&  !IntegerQ[n] && (ILtQ[m, 0] || (EqQ[m, 1] && EqQ[n, -2^(-1)]) || IntegersQ[m - 1/2, n -
1/2])

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a \sin (e+f x)} (b \tan (e+f x))^{3/2}} \, dx &=-\frac {1}{b f \sqrt {a \sin (e+f x)} \sqrt {b \tan (e+f x)}}-\frac {\int \frac {\sqrt {b \tan (e+f x)}}{\sqrt {a \sin (e+f x)}} \, dx}{2 b^2}\\ &=-\frac {1}{b f \sqrt {a \sin (e+f x)} \sqrt {b \tan (e+f x)}}-\frac {\left (\sqrt {\cos (e+f x)} \sqrt {b \tan (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)}} \, dx}{2 b^2 \sqrt {a \sin (e+f x)}}\\ &=-\frac {1}{b f \sqrt {a \sin (e+f x)} \sqrt {b \tan (e+f x)}}-\frac {\sqrt {\cos (e+f x)} F\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {b \tan (e+f x)}}{b^2 f \sqrt {a \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.21, size = 79, normalized size = 0.92 \begin {gather*} \frac {-\sqrt [4]{\cos ^2(e+f x)}-F\left (\left .\frac {1}{2} \text {ArcSin}(\sin (e+f x))\right |2\right ) \sin (e+f x)}{b f \sqrt [4]{\cos ^2(e+f x)} \sqrt {a \sin (e+f x)} \sqrt {b \tan (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a*Sin[e + f*x]]*(b*Tan[e + f*x])^(3/2)),x]

[Out]

(-(Cos[e + f*x]^2)^(1/4) - EllipticF[ArcSin[Sin[e + f*x]]/2, 2]*Sin[e + f*x])/(b*f*(Cos[e + f*x]^2)^(1/4)*Sqrt
[a*Sin[e + f*x]]*Sqrt[b*Tan[e + f*x]])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.37, size = 185, normalized size = 2.15

method result size
default \(-\frac {\left (i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \EllipticF \left (\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}, i\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )+i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \EllipticF \left (\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}, i\right ) \sin \left (f x +e \right )+\cos \left (f x +e \right )\right ) \sin \left (f x +e \right )}{f \cos \left (f x +e \right )^{2} \sqrt {a \sin \left (f x +e \right )}\, \left (\frac {b \sin \left (f x +e \right )}{\cos \left (f x +e \right )}\right )^{\frac {3}{2}}}\) \(185\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*sin(f*x+e))^(1/2)/(b*tan(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/f*(I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(cos(f*x+e)-1)/sin(f*x+e),I)*si
n(f*x+e)*cos(f*x+e)+I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(cos(f*x+e)-1)/si
n(f*x+e),I)*sin(f*x+e)+cos(f*x+e))*sin(f*x+e)/cos(f*x+e)^2/(a*sin(f*x+e))^(1/2)/(b*sin(f*x+e)/cos(f*x+e))^(3/2
)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sin(f*x+e))^(1/2)/(b*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a*sin(f*x + e))*(b*tan(f*x + e))^(3/2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.12, size = 160, normalized size = 1.86 \begin {gather*} -\frac {{\left (\sqrt {2} \cos \left (f x + e\right )^{2} - \sqrt {2}\right )} \sqrt {-a b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right ) + {\left (\sqrt {2} \cos \left (f x + e\right )^{2} - \sqrt {2}\right )} \sqrt {-a b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right ) - 2 \, \sqrt {a \sin \left (f x + e\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{2 \, {\left (a b^{2} f \cos \left (f x + e\right )^{2} - a b^{2} f\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sin(f*x+e))^(1/2)/(b*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

-1/2*((sqrt(2)*cos(f*x + e)^2 - sqrt(2))*sqrt(-a*b)*weierstrassPInverse(-4, 0, cos(f*x + e) + I*sin(f*x + e))
+ (sqrt(2)*cos(f*x + e)^2 - sqrt(2))*sqrt(-a*b)*weierstrassPInverse(-4, 0, cos(f*x + e) - I*sin(f*x + e)) - 2*
sqrt(a*sin(f*x + e))*sqrt(b*sin(f*x + e)/cos(f*x + e))*cos(f*x + e))/(a*b^2*f*cos(f*x + e)^2 - a*b^2*f)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sin(f*x+e))**(1/2)/(b*tan(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sin(f*x+e))^(1/2)/(b*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(a*sin(f*x + e))*(b*tan(f*x + e))^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {a\,\sin \left (e+f\,x\right )}\,{\left (b\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*sin(e + f*x))^(1/2)*(b*tan(e + f*x))^(3/2)),x)

[Out]

int(1/((a*sin(e + f*x))^(1/2)*(b*tan(e + f*x))^(3/2)), x)

________________________________________________________________________________________